
- Graduate Field Affiliations
- Applied Physics
- Computer Science
- Electrical and Computer Engineering
Biography
Mark M. Wilde was born in Metairie, Louisiana USA. He joined the School of Electrical and Computer Engineering at Cornell University as an associate professor in July 2022.
Previously, from 2018-2022, he was Associate Professor of Physics at Louisiana State University, with a joint appointment in the Department of Physics and Astronomy and the Center for Computation and Technology. He was Assistant Professor of Physics with the same affiliations from 2013-2018. From 2009-2013, he was a Postdoctoral Fellow in the School of Computer Science at McGill University. He received the Ph.D. degree in electrical engineering in 2008 from the University of Southern California, the M.Sc. degree in electrical engineering in 2004 from Tulane University, and the B.Sc. degree in computer engineering in 2002 from Texas A&M University. He has held visiting appointments at the University of Cambridge, the Stanford Institute for Theoretical Physics at Stanford University, the Autonomous University of Barcelona, and the Research Laboratory for Electronics at the Massachusetts Institute of Technology.
He is a recipient of the National Science Foundation Career Development Award, he is a co-recipient of the 2018 AHP-Birkhauser Prize, awarded to “the most remarkable contribution” published in the journal Annales Henri Poincare, and he is an Outstanding Referee of the American Physical Society.
Research Interests
Quantum Shannon/information/communication theory, quantum computation/algorithms, quantum optical communication, quantum computational complexity theory, and quantum error correction
What are the ultimate limits that nature imposes on communication and computation and what are effective procedures for achieving these limits? These are the questions that drive my research, and in order to answer them convincingly, we must reassess the theories of information and computation under a “quantum lens.” That is, since quantum mechanics represents our best understanding of microscopic physical phenomena and since information is ultimately encoded into a physical system of some form, it is necessary for us to revise the laws of information and computation established many years ago by intellectual giants such as Shannon and Turing. This is not merely an academic exercise, but instead represents one of the most exciting new frontiers for physics, mathematics, computer science, and engineering. Entanglement, superposition, and interference are all aspects of quantum theory that were once regarded as strange and in some cases, nuisances. However, nowadays, we understand these phenomena to be features that are the enabling fuel for a new quantum theory of information and computation, in which seemingly magical possibilities such as teleportation are becoming reality. Several notable examples are computational speedups in quantum computing, increased communication capacities of noisy communication channels, secure encryption based on physical principles, and enhanced precision in measurements. Concepts developed in the context of quantum information theory are now influencing other areas of physics as well, such as quantum gravity, condensed matter, and thermodynamics. Furthermore, quantum information theory has given us a greater understanding of the foundations of quantum mechanics and might eventually lead to a simpler set of postulates for quantum mechanics.
- Optical Physics
- Information Theory and Communications
- Information, Networks, and Decision Systems
- Quantum Information Science
Select Publications
-
Marius Junge, Renato Renner, David Sutter, Mark M. Wilde, Andreas Winter, “Universal recovery from a decrease of quantum relative entropy,” Annales Henri Poincare, vol. 19, no. 10, pages 2955–2978, October 2018. arXiv:1509.07127
-
Tom Cooney, Milan Mosonyi, and Mark M. Wilde, “Strong converse exponents for a quantum channel discrimination problem and quantum-feedback-assisted communication,” Communications in Mathematical Physics, vol. 344, no. 3, pages 797–829, June 2016. arXiv:1408.3373
-
Masahiro Takeoka, Saikat Guha, and Mark M. Wilde, “Fundamental rate-loss tradeoff for optical quantum key distribution,” Nature Communications vol. 5, no. 8, page 5235, October 2014. arXiv:1504.06390
-
Mark M. Wilde, Andreas Winter, and Dong Yang, “Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Renyi relative entropy,” Communications in Mathematical Physics vol. 331, no. 2, pages 593–622, October 2014. arXiv:1306.1586
-
Mark M. Wilde, “Recoverability in quantum information theory,” Proceedings of the Royal Society A, vol. 471, no. 2182, page 20150338, October 2015. arXiv:1505.04661
Select Awards and Honors
- Fellow, Institute of Electrical and Electronics Engineers 2023
- Outstanding Referee of American Physical Society 2021
- LSU Rainmaker Mid-Career Scholar Award (Science, Technology, Engineering & Mathematics) 2019
- AHP-Birkhauser Prize, awarded to “the most remarkable contribution” published in the journal Annales Henri Poincare 2018
- LSU College of Science Faculty Research Award 2016
- LSU Alumni Association Rising Faculty Research Award 2015
- National Science Foundation Career Development Award 2014
- APS-IUSSTF Professorship Award in Physics 2014
- Senior Member of the IEEE 2013
- Centre de Recherches Mathematiques Thematic Postdoctoral Fellowship 2011-2013
Education
- Ph.D., Electrical Engineering, University of Southern California 2008
- M.S., Electrical Engineering, Tulane University 2004
- B.S., Computer Engineering, Texas A&M University 2002