Interdisciplinary research to engineer robots safer, more adaptable than rigid robots
The National Science Foundation (NSF) is investing $20 million in 10 research awards to push forward the frontiers of engineering research in soft robotics.
“Configurable, strong, mobile robots could safely explore environments too hostile for humans, such as disaster zones and the deep ocean,” said Dawn Tilbury, NSF's assistant director for Engineering. “They could allow unprecedented extension of human perception and action to places we’ve only dreamed about, opening up vast reservoirs of knowledge and potential for innovation.”
From robots with programmable “skins” that allow them to alter their shapes to miniature robots made from muscle cells grown on an elastic filament, these NSF-funded FY2018 projects will tackle a variety of research challenges across a spectrum of applications.
One way to differentiate these new projects from more traditional rigid machines is that the soft robots are yielding enough that environmental forces can cause large changes in their shapes – for example, they can contour to delicate surfaces instead of damaging them. Put another way, if you can tie it in a knot, it’s a soft robot. Their yielding structures are preferable to rigid materials for physical interactions with people – whether safely sharing space with a human coworker, or helping a person up out of a chair. However, rules for controlling the movement of soft robots are largely unknown. This is an area of research that requires the exploration of entirely new concepts and designs for what these devices are and can do.
“Soft robotics promise enormous advantages over traditional rigid robots, such as safer working environments and greater – literal – flexibility,” Tilbury said. “Robots are permeating nearly every sector of our economy and society, changing how we work, live and play. Successfully adapting to this evolving landscape requires creating technology that adapts to us, humans. Meeting this future need requires re-engineering systems, from bottom to top and from nose to tail.”
The new awards will focus on:
Designing soft systems for transferring power and information
Creating new active soft materials and structures.
Creating representations that can model and predict large deformations of flexible structures.
Formulating new theories of movement and manipulation of flexible structures.
Supported by the NSF Directorate for Engineering's Emerging Frontiers in Research and Innovation (EFRI) program, in partnership with the Air Force Office of Scientific Research (AFOSR) and NSF’s Computer and Information Science and Engineering Directorate, the awards signal a key investment in interdisciplinary research. The award amounts are about $2 million each over the course of four years.
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2018, its budget is $7.8 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives more than 50,000 competitive proposals for funding and makes about 12,000 new funding awards.